

Design Document for:
Escape from Tibet

Written by:
Bilal Ghalib
Aaron Curley

C# Game Programming
CIS 297

Dr. Bruce Elenbogen

Version: 003

April 17, 2008

 II

Table of Contents
TABLE OF CONTENTS __ II
REVISION HISTORY___ III
1. GAME OVERVIEW __1
1.1. STORY ABSTRACT __1
1.2. GENRE ___1
1.3. TARGET AUDIENCE ___1
1.4. GAME FLOW SUMMARY__1
1.5. APPEARANCE __2
1.5.1. Screen Mockup of the Perspective View ___2

2. GAME SPECIFICATION__3
2.1. GAME PLAY ___3
2.2. INTERFACE DESCRIPTION ___4
2.2.1. Screen Flow State Diagram __4
2.2.2. Menu Interface __5
2.2.3. In-Game HUD __7

2.3. COURSE GENERATION ___8
2.4. USE CASE DIAGRAM __8

3. TECHNICAL INFORMATION ___9
3.1. DEVELOPMENT SPECIFICATION __9
3.2. PROJECT TEAM DESCRIPTION / TIMELINE___9
3.2.1. Team Name___9
3.2.2. Production Team Members___9
3.2.3. Activity Timeline ___9

3.3. CLASS DIAGRAM __10

 III

Revision History

Version Date Revision Author Details
001 3/13/08 Aaron and Bilal First draft for game plan.

002 4/11/08
Aaron Curley Expansion of the document to complete it to

match the current game design and to add all the
stuff needed for final submission. 3 UML
diagrams added. Massive restructuring. UI
section added. Game play section redone.

003 4/17/08 Aaron Curley Update to UML class diagram.

 1

1. Game Overview

1.1. Story Abstract
James Bond has just recovered an important government document detailing the time and place
of an attack on a U. S. embassy from the evil Dr. Soothsayer's lab high atop a mysterious
unnamed mountain in Tibet. To escape this treacherous place, he must ski down the steep
slopes, populated with obstacles such as rocks, trees, and snow drifts. He needs to reach his car
(at the base of the mountain) before time runs out and the explosion proves fatal to the embassy
workers.

1.2. Genre
Escape from Tibet is an arcade-style game suitable for any person who has coordinated use of a
mouse.

1.3. Target Audience
Since the graphics in the game have an animated look to them, Escape from Tibet targets those of
all ages. Furthermore, the game's alternative user input allows users who are unable to use the
mouse or keyboard to still enjoy playing the game by using head movements to control Mr.
Bond.

1.4. Game Flow Summary
Escape from Tibet is played as most would expect from a 2D game. The game first presents the
main menu to the player. The player can use the mouse, keyboard, and possibly head motions to
navigate through the menu system. When the user chooses the "start game" option, a list of
choices for user input are presented, allowing the user to choose which input device to use while
playing the game. The valid choices are:
• Camera Input
• Mouse Input
• Keyboard Input

Once a selection is made, the game begins and the user sees the slope populated with obstacles.

While playing the game, the user controls the player as he skies down the slope. Once the game
ends, the player can return to the main menu by clicking or pressing spacebar/enter. The user
can also prematurely return to the main menu by pressing ESC at any time.

 2

1.5. Appearance
Escape from Tibet is a 3rd person game using a 2D graphics engine. The "camera" remains fixed
behind Mr. Bond at most times, simulating a 3D view of the slope below and any obstacles as
seen by Mr. Bond. However, if Mr. Bond trips, the "camera" seems to "detach" from behind Mr.
Bond's head, and the player sees Mr. Bond tripping and falling to the ground, after which the
"camera" is returned its position behind Mr. Bond's head.

1.5.1. Screen Mockup of the Perspective View

 3

2. Game Specification

2.1. Game Play
The user controls Mr. Bond's movements as he skis down the hill. The player must ensure that
Mr. Bond arrives safely but quickly, to reach his car from which he will transmit a warning to
U.S. security personnel about the pending blast.

Control of Mr. Bond in Escape from Tibet can be achieved through the use of a mouse,
keyboard, or through the use of head movements recorded using a webcam attached to the
player's computer.

Player Actions:

Action Mouse Movement Head Movement Keyboard
Move left Mouse moved to the left. Player leans to the left. Left arrow key.
Move right Mouse moved to the right. Player leans to the right. Right arrow

key.
Increase speed Mouse moved upward. Player leans forward. Up arrow key.
Decrease speed Mouse moved downward. Player leans back. Down arrow

key.
Jump Left mouse click. Player moves his head quickly forward.

(Player can also use the space bar.)
Space bar.

There are two types of obstacles. Those that Mr. Bond trips over and those that act as "bumps"
where Mr. Bond travels over them, as if they were a "bump" on the course. Mr. Bond takes no
damage by traveling over a "bump" object in the course. In fact, such "bump" objects can be
used to make Mr. Bond jump even higher, by timing his jump at the peak of the "bump".
However, traveling over a bump entails some degree of risk; Mr. Bond remains in the air for a
short time after hitting a bump at high speeds. Even a few moments without control of his
current direction can result in a nasty collision between Mr. Bond and a nearby tree.

Mr. Bond loses health when he hits an object that makes him trip. The amount of damage taken
depends on the energy of the collision; faster speeds result in higher damages. Mr. Bond starts
out with 100 health. Once his health reaches zero, he dies, and does not complete his mission.

Jumping can be used to avoid shorter obstacles. However, such an action is risky because if the
jump is timed incorrectly, Mr. Bond's skis can become entangled in the obstacle and cause him
to trip.

 4

2.2. Interface Description

2.2.1. Screen Flow State Diagram
stm State Model

View ing Main Menu

Viewing Credits

View ing Instructions

Initial

Final

Viewing Input
Selection Screen

Playing Game

Camera Calibration
Wait ScreenInstructions Option Chosen

Credits Option Chosen

Quit Game

Back

Back

Start Game Chosen

Back
Mouse or Keyboard Input selected

Return to Menu

Camera Input Selected Calibration Complete

Calibration Failure

 5

2.2.2. Menu Interface
The menu interface presents a title screen to the user and allows the user to start the game
with the desired options or to get information on how to play. There are a number of
screens included in the menu interface, and they are described here.

For all menus, the current "choice" selected by the user is highlighted in a yellow color.
This allows the user to identify the choice that will be selected if ENTER is pressed (to
allow for keyboard navigation). The user may also click on a choice using the mouse.

2.2.2.1. Main Menu
The main menu allows the user to navigate to the other available screens. Possible
choices are:
• Start Game – Begins the process of starting a game by displaying the input

selection screen.
• Instructions – Displays the instructions screen.
• Credits – Displays the credits screen.
• Exit Game – Exists Escape from Tibet.

2.2.2.2. Instructions Screen
This screen simply displays text to the user that instructs him how to play the game.
There is a single option on this screen labeled "Back to Main Menu." This returns the
user to the main menu.

 6

2.2.2.3. Credits Screen
This screen simply displays the credits text to the user. There is a single option on
this screen labeled "Back to Main Menu." This returns the user to the main menu.

2.2.2.4. Input Selection Screen
This screen allows the user to choose which input device to use while playing the
game. The choices on this menu are:
• Use Camera Input – Begins the process of initializing and calibrating the

camera.
• Use Mouse Input – Starts the game, using mouse input to control Mr. Bond.
• Use Keyboard Input – Starts the game, using keyboard input to control Mr.

Bond.
• Back – Returns to the main menu.

2.2.2.5. Camera Calibration Screen
The camera calibration screen is displayed to the user if the "Use Camera Input"
option is selected. The game remains on this screen until the camera is successfully
initialized, at which point, the user is transferred to the game. If the camera fails to
initialize, an error message is displayed on the screen. Once the user clicks the mouse
or presses SPACE BAR / ENTER, the user is returned to the main menu.

 7

2.2.3. In-Game HUD
The in-game HUD is simplistic and uses text to present information to the user.

Information listed includes:
• Percentage of slope traveled – How much of the course has been completed.
• Time – How much time has elapsed.
• Health – Mr. Bond's current health.

The user may at any time press the ESC button to quit and return to the main menu. If the
player successfully completes the course or takes too much damage and dies, the game
switches back to the main menu when the user presses ESC, SPACE, ENTER, or clicks the
left mouse button.

Screen Shot of the HUD:

 8

2.3. Course Generation
The length and width of the in-game course are defined as constants in the program. The course
"wraps" along the horizontal axis; therefore, moving the player far to the left or far to the right
causes the course to "wrap around." This way, the player can never "run out" of course by
moving too far to the left or right. Once the player exceeds the length of the course (has traveled
the entire course distance), the player wins and sees a congratulatory message.

Course objects are generated and placed randomly on the course when Escape from Tibet is
loaded. Once the game is exited and restarted, objects will be in different locations than before.
The number of objects to generate is also programmed in as a constant.

2.4. Use Case Diagram
uc Use Case Model

Escape from Tibet

Player

Start Game

View Credits

View Instructions

Exit Game

Move Player

Return To Menu

Jump

 9

3. Technical Information

3.1. Development Specification
Escape from Tibet will be developed in Visual Studio 2005 using XNA Game Studio 2.0. The
system requirements for playing Escape from Tibet are as follows:
• Pentium III or AMD Athlon 1.0 GHz processor
• 256MB RAM
• DirectX® 9.0c compatible graphics card with shader 1.1 support or greater.
• Microsoft .NET Framework version 2.0.
• Microsoft XNA Framework 2.0 Redistributable.

3.2. Project Team Description / Timeline

3.2.1. Team Name
"Team Vision"

3.2.2. Production Team Members
Aaron Curley – Game design, game engine design/implementation, graphics.
Bilal Ghalib – Game design, camera interface design/implementation, sound, graphics.

Special thanks to Ruth Curley for assistance with graphics.

3.2.3. Activity Timeline
First week:
• OpenCV proxy interacting with C# game engine code.
• Game engine architecture designed.
• Preliminary menu code.
• Mouse input and camera input utilized on menu.

Second week:
• Head position HUD implemented.
• Head position calibration screen working.
• Game engine rendering landscape.
• Left-right movement implemented.
• Working game timer.

Third week:
• Obstacle objects positioned and moving properly to simulate forward movement.
• Initial obstacle collisions.

o Fatal.
o Nonfatal.

• Initial sound effects.

Fourth week:
• Finish collision tweaking.

 10

• Add further sound effects.
• Testing.
• Packaging for final release.

3.3. Class Diagram
A UML class diagram created using Enterprise Architect is included on the next page. This
diagram illustrates the architecture of Escape from Tibet.

 11

class Class Model

Program
+ GAME_TITLE: string = "Escape from Tibet"
+ VERSION_STRING: string = "v 0.60"
+ NATIVE_WIDTH: int = 1024
+ NATIVE_HEIGHT: int = 768
+ control ler: ControllerEngine

- Main(string[]) : void

Microsoft.Xna.Framework.Game
ControllerEngine

+ CAMERA_POLL_INTERVAL: int = 250
m_initSuccess: bool = false
m_initErrorMessage: String
m_graphics: GraphicsDeviceManager
m_windowSize: Viewport
m_keyboard: KeyboardHandler
m_mouse: MouseHandler
m_camera: OpenCVProxy
m_cameraPollSuccess: bool
m_spriteHandler: SpriteBatch
m_gameState: GameState
m_randomGenerator: Random
timerCounter: int
m_menuEngine: MenuEngineHandler
m_playEngine: PlayEngineHandler
m_inputToUse: InputType
m_audioEngine: AudioEngine
m_waveBank: WaveBank
m_soundBank: SoundBank
m_musicCategory: AudioCategory
errorFont: SpriteFont

+ swi tchToMenu() : bool
+ swi tchToPlaying() : bool
+ exi tGame() : void
+ ControllerEngine()
Initial ize() : void
LoadContent() : void
UnloadContent() : void
Update(GameTime) : void
Draw(GameTime) : void
+ GameShutdown() : void
«property»
+ initSuccess() : bool
+ initErrorMessage() : String
+ graphics() : GraphicsDeviceManager
+ windowSize() : Viewport
+ keyboard() : KeyboardHandler
+ mouse() : MouseHandler
+ camera() : OpenCVProxy
+ cameraPollSuccess() : bool
+ spriteHandler() : SpriteBatch
+ gameState() : GameState
+ randomGenerator() : Random
+ menuEngine() : MenuEngineHandler
+ playEngine() : PlayEngineHandler
+ inputToUse() : InputType
+ audioEngine() : AudioEngine
+ waveBank() : WaveBank
+ soundBank() : SoundBank
+ musicCategory() : AudioCategory

«enumeration»
ControllerEngine::

GameState
 None
 Menu
 Playing

EngineHandler

+ EngineHandler()
+ Initial ize() : bool
+ LoadContent() : bool
+ UnloadContent() : bool
+ Update(GameTime) : void
+ Draw(GameTime) : void
+ Activate() : void
+ Deactivate() : void

MenuEngineHandler
UNSELECTEDCHOICECOLOR: Color = Color.Black {readOnly}
SELECTEDCHOICECOLOR: Color = Color.OrangeRed {readOnly}
CREDITS_TOP: int = 10
CREDITS_LEFT: int = 10
CREDITS_TEXT: String = "-----Escape fr...
INSTRUCTIONS_TOP: int = 10
INSTRUCTIONS_LEFT: int = 10
INSTRUCTIONS_TEXT: String = "-----Escape fr...
CREDITS_TEXT_COLOR: Color = Color.Black {readOnly}
m_menuState: MenuState
m_mainMenuBackground: Texture2D
m_mainMenuBackground_dest: Rectangle
m_mainMenuLight: Texture2D
m_mainMenuLight_dest: Rectangle
m_mainMenuTitleFont: SpriteFont
m_VersionFont: SpriteFont
m_MenuChoiceFont: SpriteFont
m_SubmenuChoiceFont: SpriteFont
m_mainMenuChoices: String ([]) = {"Start Game", ...
m_mainMenuChoices_rects: Rectangle ([])
m_instructionsMenuSingleChoice: String = "Back to Main Menu"
m_cameraOptionMenuChoices: String ([]) = { "Use Camera i...
m_cameraOptionMenuChoices_rects: Rectangle ([])
m_currentChoice: int
m_lastMouseX: int
m_lastMouseY: int

+ MenuEngineHandler()
+ Initial ize() : bool
+ LoadContent() : bool
+ UnloadContent() : bool
+ Update(GameTime) : void
+ Draw(GameTime) : void
+ Activate() : void
+ Deactivate() : void

«enumeration»
MenuEngineHandler::

MenuState
 MainMenu
 InstructionsMenu
 Credi tsMenu
 InputOptionMenu
 CalibrationWait

PlayEngineHandler
BEGINNINGINTROTIME: int = 7000
MAX_HORIZON_VIEW_DISTANCE: int = 35000
HORIZON_PIXELS_PERCENTAGE: double = 0.252604167
COURSE_WIDTH: int = 40000
+ COURSE_MAX_Z: int = 1000000
+ COURSE_MIN_Z: int = -10000
SNOWMAN_X_DIST_APART: int = COURSE_WIDTH / 5
+ DEF_NUM_STATIC_ACTORS_TO_GENERATE: int = 4500
+ STATIC_ACTORS_TO_GENERATE_STEP: int = 500
PLAYER_INITIAL_SPEED: int = 2000
PLAYER_MAX_SPEED: int = 8000
PLAYER_MIN_SPEED: int = -500
PLAYER_MAX_ACCELERATION_PER_SEC: int = 20
PLAYER_MAX_DECELERATION_PER_SEC: int = 45
PLAYER_MAX_ANGLE: int = 35
PLAYER_MIN_ANGLE: int = -35
PLAYER_DEGREES_PER_SEC: float = 90f
PLAYER_JUMP_SPEED: int = 1750
GRAVITY_ACCELERATION_PER_SEC: int = 3500
PLAYER_PAIN_FACTOR_MULTIPLIER: float = 0.0040f
CAMERA_DECELERATION_RATE: int = 125
m_playState: PlayState
m_stateTimer: T imeSpan
m_playTimer: T imeSpan
m_skyBackground: Texture2D
m_skyBackground_dest: Rectangle
m_snow: Texture2D
m_border: Texture2D
m_border_dest: Rectangle
m_faceOverlay: Texture2D
m_CountdownFont: SpriteFont
m_mediumFont: Spri teFont
m_player: Player
m_staticCourseObjects: CourseSP
horizonYPixelPos: int
m_cameraPosition: Vector3
m_cameraSpeed: float
songPlaying: Cue
+ numStaticActorsToGenerate: int = DEF_NUM_STATIC_...

+ PlayEngineHandler()
+ Initial ize() : bool
+ LoadContent() : bool
+ UnloadContent() : bool
+ Update(GameTime) : void
moveCameraWithPlayer() : void
+ Draw(GameTime) : void
drawActorOnCourse(Spri teBatch, Actor, Vector3) : void
+ Activate() : void
+ Deactivate() : void
generateCourseActors(ContentManager) : bool
+ regenerateCourse() : bool

«enumeration»
PlayEngineHandler::

PlayState
 Beginning
 Playing
 Paused
 GameOver
 Complete

MouseHandler
newState: MouseState
oldState: MouseState

+ MouseHandler()
+ Update() : bool
+ WasLeftButtonPressed() : bool
+ WasRightButtonPressed() : bool
«property»
+ Y() : int
+ X() : int
+ LeftButton() : ButtonState
+ RightButton() : ButtonState
+ MiddleButton() : ButtonState

KeyboardHandler
newState: KeyboardState
oldState: KeyboardState

+ KeyboardHandler()
+ Update() : bool
+ IsKeyDown(Keys) : bool
+ IsKeyUp(Keys) : bool
+ WasKeyPressed(Keys) : bool

Player
+ STATE_MOVING: int = 0
+ STATE_DYING: int = 1
+ STATE_DEAD: int = 2
+ STATE_FALLING: int = 3
+ STATE_GETTINGUP: int = 4
m_playerHeadTex: Texture2D
m_playerHeadLeftTex: Texture2D
m_playerHeadExtremeLeftTex: Texture2D
m_playerHeadRightTex: Texture2D
m_playerHeadExtremeRightTex: Texture2D
m_playerFall ingOne: Texture2D
m_playerFall ingTwo: Texture2D
m_currentFall ingFrame: Texture2D
m_playerStuckInSnow: Texture2D
+ GETT INGUP_TIME_MILLIS: int = 1000
+ FLYFORWARD_TIME_MILLIS: int = 500
+ FALLING_STATE_TIMEOUT: int = 2500
m_stateTimer: int
+ speed: float
+ vSpeed: float
+ angle: float
+ health: int

+ initial ize(Microsoft.Xna.Framework.Content.ContentManager) : bool
+ draw(SpriteBatch, Rectangle) : bool
+ animate(GameTime) : bool
«property»
+ state() : int

Tree1
+ STATE_THERE: int = 0

+ Tree1()
+ initial ize(ContentManager) : bool
+ animate(GameTime) : bool
«property»
+ state() : int

StaticActor
m_texture: Texture2D
m_rideOver: bool
m_coll ide: bool

+ StaticActor()
+ draw(SpriteBatch, Rectangle) : bool
«property»
+ rideOver() : bool
+ canColl ide() : bool

«struct»
PlayEngineHandler::

Size
+ Height: int
+ Width: int

Actor
+ pos: Vector3
m_state: int
m_coll isionSize: Vector3
m_objectSize: Vector3
m_imgSize: Size

+ Actor()
+ initial ize(ContentManager) : bool
+ draw(Spri teBatch, Rectangle) : bool
+ animate(GameTime) : bool
«property»
+ coll isionSize() : Vector3
+ objectSize() : Vector3
+ imgSize() : Size
+ state() : int

Rock1
+ STATE_THERE: int = 0

+ Rock1()
+ ini tial ize(ContentManager) : bool
+ animate(GameTime) : bool
«property»
+ state() : int

CourseSP
DEF_PARTIT ION_SIZE: int = 5000
INITIAL_PARTITION_CAPACITY: int = 500
m_numPartitions: int
m_partitionSize: int
m_partitionObjects: StaticActor ([][])
m_numUsed: int ([])
m_currentIteratorPartition: int
m_currentIteratorPosition: int

+ CourseSP()
+ initial ize(int) : bool
+ sortFarthestToNearest() : void
+ sortFarthestToNearest(int) : void
+ add(StaticActor) : bool
+ begin(int) : StaticActor
+ next() : StaticActor
+ getPartitionLocatedIn(int) : int
+ getPartitionLocatedIn(Vector3) : int
+ getPartitionLocatedIn(Actor) : int
sort(StaticActor[], int) : void
Quick_Sort_Main(StaticActor[], int, int) : void
split(StaticActor[], int, int, int*) : void
isHigherThan(StaticActor, StaticActor) : bool
«property»
+ numPartitions() : int
+ partitionSize() : int

«enumeratio...
ControllerEngine::

InputType
 Undefined
 Camera
 Mouse
 Keyboard

Bump1
+ STATE_THERE: int = 0

+ Bump1()
+ initial ize(ContentManager) : bool
+ animate(GameT ime) : bool
«property»
+ state() : int

Bump2
+ STATE_THERE: int = 0

+ Bump2()
+ ini tial ize(ContentManager) : bool
+ animate(GameTime) : bool
«property»
+ state() : int

Tree2
+ STATE_THERE: int = 0

+ Tree2()
+ ini tial ize(ContentManager) : bool
+ animate(GameTime) : bool
«property»
+ state() : int

«struct»
FaceRecord

+ currentlyRecognized: bool
+ x: int
+ y: int
+ width: int
+ height: int
+ camWidth: int
+ camHeight: int
+ numpoll: int
+ cl icked: bool

OpenCVProxy
m_wrapper: OCVWrap = new OCVWrap()
m_initSuccess: bool = false
m_cameraSize: Size
m_record: FaceRecord
m_failedToLocateCounter: int = 0
- faceAreas: int ([]) = new int[5]

+ OpenCVProxy()
+ ini tial ize() : bool
+ deactivate() : void
+ isIni tial ized() : bool
+ poll() : void
«property»
+ faceInfo() : FaceRecord
+ cameraSize() : Size

Bump3
+ STATE_THERE: int = 0

+ Bump3()
+ initial ize(ContentManager) : bool
+ animate(GameTime) : bool
«property»
+ state() : int

Snowman
+ STATE_THERE: int = 0
+ PERCENT_COURSE_PER_SNOWMAN: int = 16
NUM_SNOWMAN: int = 6
m_textures: Texture2D ([]) = new Texture2D[N...

+ Snowman()
+ initial ize(ContentManager) : bool
+ animate(GameTime) : bool
+ draw(SpriteBatch, Rectangle) : bool
«property»
+ state() : int

#m_coll isionSize

1

#m_mouse
1

1
#m_keyboard 1

1

#m_menuState

1

1#m_playState 1

#m_cameraSize

1
#m_gameState

1

1

#m_menuEngine
1

1

#m_playEngine 1

+control ler

#m_imgSize

1

#m_staticCourseObjects 1

1
#m_partitionObjects
*

1

#m_inputToUse
1

1

#m_player
1

1

#m_camera
1

1
#m_record 1

